Trip Report

Countries Visited: Uzbekistan, Kyrgyzstan and Tajikistan

Dates of Travel: July 19-31, 2008

Travelers Names and Affiliations: Richard Bernsten, Michigan State University
Mywish Maredia, Michigan State University

Purpose of Trip: To conduct a baseline assessment of the research, outreach and capacity building activities of the IPM CRSP project in Uzbekistan, Kyrgyzstan and Tajikistan to facilitate impact assessment of project outputs and outcomes down the road.

Sites Visited:

<table>
<thead>
<tr>
<th>Country</th>
<th>Locations (cities/villages/regions)</th>
<th>Institutions visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzbekistan</td>
<td>Tashkent (and surrounding areas)</td>
<td>ICARDA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tashkent Res. Institute of Plant Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOSIFAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biolabs at: Tashkent Res. Institute of Plant Protection</td>
</tr>
<tr>
<td></td>
<td>Samarqand</td>
<td>Accurgan and Yangiyul</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Bishkek</td>
<td>A public sector biolaboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological and Soil Institute of the National Academy of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sciences of Kyrgyzstan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kyrgyz Agrarian University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Botanical garden of the National Academy of Sciences</td>
</tr>
<tr>
<td></td>
<td>Issyk-Kul</td>
<td>ATC field office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farmer Field School ran by Shoola</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>Dushanbe</td>
<td>Institute of Zoology and Parasitology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Institute of Plant Protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farmer Field School</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ministry of Agriculture</td>
</tr>
</tbody>
</table>

Description of Activities/Observations:

1. Objectives:
The main purpose of this visit was to conduct a baseline assessment of the research, outreach and capacity building activities of the IPM CRSP project in Uzbekistan, Kyrgyzstan and Tajikistan to facilitate impact assessment of project outputs and outcomes down the road. The focus of baseline data/information collection in each of these countries was as follow:
Uzbekistan: The status of bio labs, including 1) the availability of bio control agents; 2) mass rearing practices, and 4) the dissemination of bio agents by labs, government, and NGOs.

Kyrgyzstan: The status of IPM-related training and outreach, including: 1) available training resources for academic programs; 2) inclusion of IPM in academic program curriculum; 3) status of farmer field schools, 4) availability of IPM training resources for outreach programs, and 5) inclusion of IPM material in extension programs.

Tajikistan: The status of IPM CRSP activities related to the: 1) initiatives to collect native plants/species that are good sources of nectar for anthropod species, 2) introductions of native plants/species as sources of nectar for anthropoid species; and 3) methods used to control pest (counterfactual).

2. Trip Itinerary

Uzbekistan: Meetings with/visits to: Dr. Barno Tashpulatova (HC-PI), ICARDA scientists (including the Deputy Director and the economist), Director of the Institute for Plant Protection, Director of Biosifat (responsible for licensing/certifying biolabs), several biolabs public and private (e.g., a private lab at the Institute of Plant Protection, biolabs in Accurgan and Yangiyul, and a private biolab near Samarkand), Rector and Entomologist at the Samarkand State University.

Kyrgyzstan: Meetings with/visits to: Dr. Murat Aitmotov (HC-PI), Director and scientists at the Biological and Soil Institute of the National Academy of Sciences of Kyrgyzstan, Botanical Garden (site of nectar plant field trials), faculty of Kyrgyzstan Agricultural University, KAU’s student experimental plots (accompanied by faculty and students), a public sector biolaboratory, IPM Coordinator of the Advisory Training Center for Rural Advisory Services (ATC-RAS), field trip to Issyk-Kul to meet with staff of the Agricultural Training Center and visit a farmers field school.

Tajikistan: Meetings with/visits to: Dr. Nurali Saidov (HC-PI), scientists at the Institute of Zoology and Parasitology and Institute’s experimental field (site of nectar plant field trials), Director of the Department of Plant Protection, Team Leader of EU/TACIS/SENAS, a farmer field school/village where farmers had planted nectar plants, wholesale vegetable seed market.

3. Overview:

General Impressions:
- The trip was very productive and informative
- HC scientists have a very small operating budget; but have been very productive, despite limited resources
- We were extremely impressed with the host-country PIs, their respective research programs, and the strength of relations that they have developed with their host-country colleagues
- The project has generated numerous outputs, including publications, manuals and outreach materials
- Challenges remain in converting these outputs into impacts

Main Findings:

Uzbekistan: The use of biocontrol (predator insects) to control pests is well established in Uzbekistan (it has a long history of this capacity from the Soviet times, given the
major focus of the Republic on cotton). The Republika Biosifat Markaziy (Biosifat, in short) was established in 2005 to set standards for biolabs and do quality control. According to the Director of Biosifat there are 830 licensed biolabs in the country and another 30 that are registered but waiting for their license. So approximately there are about 860 biolabs. These vary in size and scale and in the mix between mechanical and non-mechanical operation. But at least 400 are large-scale bio-factories that produce Trichogramma. Some biolabs specialize in producing mother culture to other biolabs. The three most widely used product lines in the biolabs we visited were: Trichogramma, bracon (H. Hebetor) and lace wing (chrysopa carnea). The main target crop for the use of these biocontrol agents is cotton. The use of biocontrol on other crops like wheat, fruits and vegetables appeared to be small. Biolabs that produce biocontrol agents to farmers, provide both the products and the service (i.e., releasing the bugs in the field).

Currently, farmers receive credit from the government to purchase inputs, including predator insects. It appears that the government specifies which inputs farmers should use, and also sets and monitors 10-year crop rotation cycle (3 years alpha alpha, 3 years cotton, 1 year wheat, 1 year cotton, 1 year maize and 1 year cotton). They also set the price for the bio-control insects.

The Institute of Plant Protection, which hosts the HC PI, appears to have limited resources—many offices are vacant and the facilities are in disrepair. According to its Director, the institute has 150 staff—40 Ph.D., 11 higher than Ph.D., and the rest technicians/agronomists. Sixty percent are women. The Institute’s focus is on biological control (cotton and other crops), IPM, plant immunology, locust control, and forecasting diseases and pest. The Institute has conducted many training courses and developed outreach materials to promote the use of biolabs not only in the country but also in other countries (e.g., Bangladesh).

Compared with the Institute of Plant Protection, the Samarkand State University appeared to be more vibrant and resourceful. This university is considered one of the pioneers in bio-control research. The Entomologist we met at SSU (Dr. Daron Nasrulahiev) had many years of experience in the area of biocontrol research. He was the head of the government unit that governed the bio-labs. He currently serves as the consultant for the 32 biolabs in the Samarkand area. He sees the future prospects for biolabs in the areas of microbial suspension and bio-pesticides.

Biosifat, as part of its responsibility for licensing/certifying biolabs, makes annual visits to each biolab in the country and collects data about the lab. These data forms are available at the Biosifat office (located next to the Institute of Plant Protection). The Director of Biosifat commented that he would be willing to make these data forms available to the CRSP project. The project should therefore consider hiring someone to review these forms and extract key data, which could be entered in a data base. Analysis of these data would provide a baseline assessment/description of the country’s biolabs. Given this potential source of data that already exists, the plan to conduct a sample survey of the biolabs has been suspended.
Kyrgyzstan: Status of biolabs: There are four biolabs in the country—one each in/near Bishkek, Osch, Issykul and Jalalabad. All these biolabs come under the Ministry of Agriculture. The product lines of the biolab we visited appeared more extensive than the ones visited in Uzbekistan. Other than Trichogramma, bracon and lace wing, the product line of the biolab in Bishkek included—Amblyseius (predator mite), trihadermin (used to control root diseases/fungus in horticultural crops) and biolignine (plant growth stimulant).

Status of research on IPM: Unlike Uzbekistan, there is no “center for plant protection” in Kyrgyzstan. Thus, there is no one body/unit to coordinate research, training and extension activities in the area of “plant protection” (including IPM). The IPM-CRSP project ran by Murat has therefore given the local researchers at the National Biology and Soils Institute opportunities to work with international researchers and get support on research methodology, and an opportunity to work with students and post-docs from the agrarian university.

Status of IPM education/training programs: The Agrarian university (size=500 students) offers higher education diploma (a 4.5 year program after 10 years of school) in agriculture/agronomy. Plans are underway to start offering IPM specialization from Sept 2009. IPM courses will be developed to teach students in their 4th year as a specialization. Currently, as a pilot initiative towards this plan, six senior students are working on IPM research projects through CRSP funding. These students were selected (or left) from a pool of 30 potential students. They will graduate with a degree in Agronomy with a specialization in IPM. (Footnote: The University used to offer plant protection specialization 5 years ago. But this was discontinued by the Ministry of Education due to issues of teaching standards). In the long-term, the goal is to establish a national IPM center in collaboration and partnership with: the Agrarian University, National Academy of Sciences, the Botanical Garden, Ministry of Agriculture (Department of Pesticides and Plant Protection, Department of Forestry, Dept. of Quarantine and Inspection), etc. The goal is to train the best IPM trainers. The task of this center will be to develop the curriculum on IPM and establish educational facilities such as laboratories, equipments, and IPM teaching and research infrastructure.

Status of extension system: The government has no extension system. The extension service is offered through the Rural Advisory Service (RAS)—that was established by the World Bank in 1998. The most common model of extension used in the country is farmer field schools (small-scale—with each FFS having 10-15 farmers). However, currently all farmer field schools are funded by donor projects and operated by NGOs (e.g., Shoola, RAS, MercyCorp). ATC serves as the resource agency to train the trainers from these NGOs that will conduct FFS. They have trained close to 100 trainers since 2003. Murat serves as an IPM expert and has helped train master trainers and develop education and training materials for the TOT courses organized by ATC.
Tajikistan: Status of biolabs: There are no more than 15 biolabs in the country; all focused on cotton and produce trichogramma and bracon. Today, biolabs cover maybe 1% of cropped area in Tajikistan.

Status of IPM research: The HC PI, Nurali Saidov has been given an office (with Internet facility) and field research plots in the Institute of Zoology and Parasitology and gets support of two Entomologists, a field assistant and a post-doc for his CRSP research. The focus of the CRSP research project in the Institute is on landscape ecology—i.e., introduce nectar plants in vegetable farming landscape to attract beneficial insects. Before the CRSP project, there was no such research in Tajikistan. Target crops for IPM CRSP research on landscape ecology include: vegetables grown by smallholders – e.g., tomatoes, sweet peppers (capsicum), eggplants. Smallholder vegetable farming is done on landholding of 0.1 ha per farmer (average figure). Examples of vegetable pests targeted by the CRSP research include: cutworm, white fly, spider mites, Colorado beetles, helmitheos (?). According to the Director and other researchers we met in Tajikistan, there is a great potential for landscape ecological research. Reasons: there are 5000 species of nectar plants (including 200 for bee-keeping).

The project collaborates with other Institutes of the Academy of Agricultural Sciences under the Ministry of Agriculture (i.e., Institute of Crop Production—Anwar Jalileov). The PI also collaborates with selected faculty members from the Tajikistan Agrarian University. Other informal linkages include – Petra’s program, UNDP, Senesas—all for outreach/extension. There is no functional government extension service. A weak or non-existent extension system seems to be a potential constraint for promoting landscape ecology as an IPM strategy.

Status of FFS Activities: Murat provided TOT training in Tajikistan in Feb 2007. Six Tajiks were trained as trainers—but only two selected to implement FFS, which started in 2007. Focus in 2007 was on agro-technology (i.e., plant spacing, irrigation, manure application, pheromone, entomophagan). In 2008—the focus is on IPM. A publication (hand book/brochure) on IPM geared towards tomato farmers has been developed by Murat, Nurali and Anwar. This is adapted for Tajik conditions based on the ATC booklet. The FFS runs from April to August. Farmers meet twice a month for 4 hour sessions. Last year, 16 farmers were enrolled. However, this year only 12 farmers are in this FFS. Tomato is the main focus of FFS.

Other organizations involved in FFS in Tajikistan: Other than Anvar’s pilot-level program and the ATC (active in the Kulyab region—3 out of 10 districts), UNDP has also started FFS (from May 2007). Their target geographic region is—South (Shartoosh region). It covers 8 districts with at least one FFS in each. Works directly with “Jamoat”—village head or leader of village level organization covering 10-20 villages. Focus is on vegetable and melons. This program was initiated with advice/consultations from international consultants/experts (i.e., FFS specialist, agronomist) who were invited to Tajikistan every quarter. This is only a 2 year program working with CBOs (community based organizations).
Training: project supports one post-graduate student’s research on “The role of nectar plants on attractiveness of natural enemies in vegetable landscape.” He will submit his thesis to the Tajik Agricultural Academy of Science for a doctorate degree.

4. Overview of the IPM-CRSP project outputs and potential impact pathway

Uzbekistan:
Following are the project accomplishments/achievements to date related to developing a new product line for the biolabs (see Annex 2 for list of publications and printed materials):

- Laboratory and field studies of the Predaceous Mites Amblyseius cucumeris and Amblyseius mckenziei Amblyseius swirskii have been studied
- Materials and suitable laboratory facilities for experiments have been found and colonization of local species of predator mites have been studied
- The conditions for rearing candidate predator mites and their prey in Uzbekistan and Kyrgyzstan bio-laboratories and crop fields have been studied;
- Laboratory and plot experiments in Uzbekistan and Kyrgyzstan have been conducted
- The predation ability of A. cucumeris on spider mites T.urticae in laboratory condition has been determined. A.mckenziei in cotton plot against spider mites (T.urticae)in Uzbekistan have been applied
- The effect of plant pollens under different time and temperature on A. cucumeris surviving features in laboratory conditions has been studied.
- Field small plot experiment of thrips control using A.cucumeris on onion plot has been conducted

Expected project output(s) from these achievements include:
- The process for rearing predator mites under bio-lab settings successfully developed (in 2009)

Expected outcomes:
- A.cucumeris is successfully reared by bio-labs and is offered as one of the products to farmers
- Farmers apply A.cucumeris for the management of spider mites, thrips and whiteflies on cotton, vegetables, fruit and greenhouse crops.

Potential economic impacts, if project outputs and outcomes are successfully achieved:
- Reduction in the cost of using other replaced methods of pest control (if any)
- Reduction is crop loss due to spider mites, thrips and whiteflies
- Increase in crop productivity
- Health and environmental benefits from products with enhanced food and environmental safety attributes
- Increase in revenue/profits for biolabs who will expand their product line to include A.cucumeris.

Critical assumptions and potential issues for consideration along the impact pathway:
- It is not clear why it is expected to take another year to develop a system for rearing predator mites.
For biolabs to adopt the methods required to rear predator mites, they will have to invest in new equipment (e.g., a cool room). Will biolabs be willing to make this investment?

Will farmers be allowed to use their credit line to purchase predator mites?

While biocontrol (predators) is currently used to control crop pests, it is not clear if they effectively control pests and the extent to which farmers also apply pesticides to control spider mites.

Kyrgyzstan:
Following are the project accomplishments/achievements to date related to IPM education and extension (see Annex 2 for list of publications and printed materials):

- Completed a survey to determine the constraints and needs of farmers to design IPM strategies in Kyrgyzstan.
- Collected information and developed electronic databases of catalogue of printed materials (publications) on IPM and research organizations and resource personnel involved in IPM in Central Asia.
- Developed modules for an IPM-FFS short course on vegetable crops. The electronic versions of modules available in Kyrgyz language.
- Developed three calendars in Russian, Uzbek and English languages for use in FFS: 1) Calendar of Damage by cabbage insects in the various periods of development; 2) Calendar of Damage by tomato insects in the various periods of development; 3) Calendar of Damage by carrot insects in the various periods of development.
- Conducted ToT sessions in Tajikistan and trained six master trainers. Two of these have started an FFS in the Gissar district and currently training 15 farmers on IPM.
- Twelve modules were completed, improved and adapted for the agrarian institute of the higher education for use in ToT.
- Implementation of the first teaching program on IPM and using Students Field School (SFS) model (involving 6 students) at the Kyrgyz Agrarian University.
- Developed and renewed the compendium on IPM for trainers of the agrarian universities of Central Asia.

Expected project output(s) from these achievements include:

- Improved/new curriculum for teaching IPM at the University.
- Trained master trainers to implement FFS.
- Outreach materials and publications on IPM as resource materials in IPM education programs.
- Local stakeholders sensitized about research, teaching and outreach in IPM.

Expected outcomes:

- IPM is integrated in the curriculum of KAU and is offered as a field of specialization to undergraduate students.
- Establishment of a national IPM Center.
- Enhanced capacity of NGOs and government agencies to implement FFS.

Potential economic impacts, if project outputs and outcomes are successfully achieved:

The outputs and outcomes of this project are institutional capacity building, whose impacts are economic impacts are long-term and indirect. It will be difficult to
measure and attribute the impacts of this component of the CRSP project within the time frame of the CRSP project. Any near-term impact assessment should thus focus on indicators of project outputs and outcomes.

Critical assumptions and potential issues for consideration along the impact pathway:

It will be difficult for the project to have widespread impact, if it only disseminated its materials through farmer field schools. The introduction of IPM curriculum at Kyrgyzstan Agrarian University will serve to accelerate its dissemination as graduates secure agriculture-related jobs. However, the project should explore additional ways to disseminate its IPM guidelines, such as working to get it included in the primary and secondary school curriculum.

Tajikistan:

Following are the project accomplishments/achievements to date focused on agro-ecology (see Annex 2 for list of publications and printed materials):

- Established research plots to study attractiveness of 23 nectar plants in Tajikistan
- Established research plots to study attractiveness of 10 nectar plants in Kyrgyzstan
- Established research plots (nectar plant strip in between vegetables and cotton crops) to screen agro-characteristics of 8 species of nectar plants and compare them with a control (existing field grass).
- Organized 2 workshops (one day workshop in 2006 with Murat and IPM Stakeholders Forum, 2007) and invited all major stakeholders from the ministry, university, head of the plant protection to spread the idea of benefits of nectar plants

Expected project output(s) from these achievements include:

- An extension bulletin on landscape ecology (to be completed in early 2009).
- 10-12 nectar plant species identified for introduction into existing vegetable crop systems in Tajikistan (2009)
- 5-6 nectar plant species identified for introduction into existing vegetable crop systems in Kyrgyzstan (2009)

Expected outcomes:

- Farmers planting nectar plants in their vegetable crop systems

Potential economic impacts, if project outputs and outcomes are successfully achieved:

- Reduction in the cost of using other replaced methods of pest control (if any)
- Reduction is crop loss due to harmful pests
- Increase in crop productivity
- Health benefits from enhanced food safety attributes

Critical assumptions and potential issues for consideration along the impact pathway:

To date, the project has focused on research—to identify nectar plants that can be grown in farmer’s fields to attract beneficial insects. Given the short length of time that the project has been ongoing, this is appropriate. However, for the project to have impact in the future, it must identify strategies for widely disseminating its research finding. For example, vegetable farmers typically buy new seed every season. It might be possible to disseminate the projects research findings via brochures provided to vegetable seed sellers—which they could give to their customers.
In Summary:
The projects have been operating for about two years. All of the research projects have made good progress in achieving their objectives, but none of the sub-projects have generated outputs that have resulted in observable outcomes (e.g., adoption by farmers). Thus it is very difficult/impossible to assess their quantitative impacts at this time (i.e., economic returns to research investments).

Training Activities Conducted: None

Suggestions, Recommendations, and/or Follow-up Items: See the attached detailed report

List of Contacts Made:

<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Organization</th>
<th>Contact Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barno Tashpulatova</td>
<td>ICARDA (HC PI in Uzbekistan)</td>
<td>b.tashpulatova@cgiar.org</td>
</tr>
<tr>
<td>Zakir Khalikulov</td>
<td>ICARDA (Tashkent Office)</td>
<td>z.khalikulov@cgiar.org</td>
</tr>
<tr>
<td>Alisher Mirzabaev</td>
<td>ICARDA (Tashkent Office)</td>
<td>a.mirzabaev@cgiar.org</td>
</tr>
<tr>
<td>Akhror U. Sagdullaev</td>
<td>Director, Scientific Research Institute of Plant Protection Republic of Uzbekistan</td>
<td>sau_53@mail.ru</td>
</tr>
<tr>
<td>Zaxidov Maxmud</td>
<td>Director, BIOSIFAT, Uzbekistan</td>
<td>Tel: +8 (371) 2605121</td>
</tr>
<tr>
<td>Davron Nasrullaev</td>
<td>Entomologist, Samarqand State University</td>
<td>+998 (662) 351938 (general number of the university)</td>
</tr>
<tr>
<td>Dr. Mukhtar</td>
<td>Rector, Samarqand State University</td>
<td>Tel: +998 662 312308 Email: nmukhtar@samuni.silk.org</td>
</tr>
<tr>
<td>Mardanova Marhabo</td>
<td>Owner, private biolab in Samarqand</td>
<td>(366) 1925072</td>
</tr>
<tr>
<td>Several staff members</td>
<td>Director of Government Biolaboratory in Bishkek</td>
<td>(312) 614268 (312) 614269</td>
</tr>
<tr>
<td>Murat Aitmatov</td>
<td>ICARDA (HC PI in Kyrgyzstan)</td>
<td>m.aitmatov@CGIAR.ORG</td>
</tr>
<tr>
<td>Bekmamat Djenbaev</td>
<td>Director, Institute of Biology and Pedology, Kyrgyzstan</td>
<td>bekmamat2002@mail.ru</td>
</tr>
<tr>
<td>Janyl M. Chelpakova</td>
<td>Senior Scientist, Institute of Biology and Pedology, Kyrgyzstan</td>
<td>+996 (312) 24-39-98</td>
</tr>
<tr>
<td>Nurdin Karabaev (and</td>
<td>Director, Agro Engineering Dept., Kyrgyz Agrarian University</td>
<td>nuru51@mail.ru</td>
</tr>
<tr>
<td>his staff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdybek Asanaliev</td>
<td>Assoc. Prof. Kyrgyz Agrarian University</td>
<td>asanalay61@mail.ru</td>
</tr>
<tr>
<td>Kaseeva Gulnaz</td>
<td>IPM Coordinator, ATC-RAS, Kyrgyzstan</td>
<td>gulnaz@atc.kg</td>
</tr>
<tr>
<td>Elisabeth Riaz</td>
<td>Program Manager, Helvetas, Kyrgyzstan</td>
<td>ksap@helvetas.kg</td>
</tr>
<tr>
<td>Director and staff</td>
<td>Shoola (an NGO that works with ATC to implement Farmer Field School in Issyk-Kul)</td>
<td>Bokinbaev Village, Ton district, Issyk-Kul province (3947) 91-6-02 shoola@elcat.kg</td>
</tr>
<tr>
<td>Name</td>
<td>Position and Affiliation</td>
<td>Email</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Nurali Saidov</td>
<td>ICARDA (HC PI in Tajikistan)</td>
<td>n.saidov@cgiar.org</td>
</tr>
<tr>
<td>Abdusattor Saidov (and his staff)</td>
<td>Director, Institute of Zoology and Parasitology, Tajikistan</td>
<td>abdusattor.s@mail.ru</td>
</tr>
<tr>
<td>Petra Geraedts</td>
<td>Team Leader, EU TACIS/SENAS, Tajikistan</td>
<td>petra.geraedts@gmail.com</td>
</tr>
<tr>
<td>Anvar Jalileov and staff members</td>
<td>Director, Plant Pathology, Dept. Of Plant Protection, Tajikistan</td>
<td>anvar_58@list.ru</td>
</tr>
</tbody>
</table>